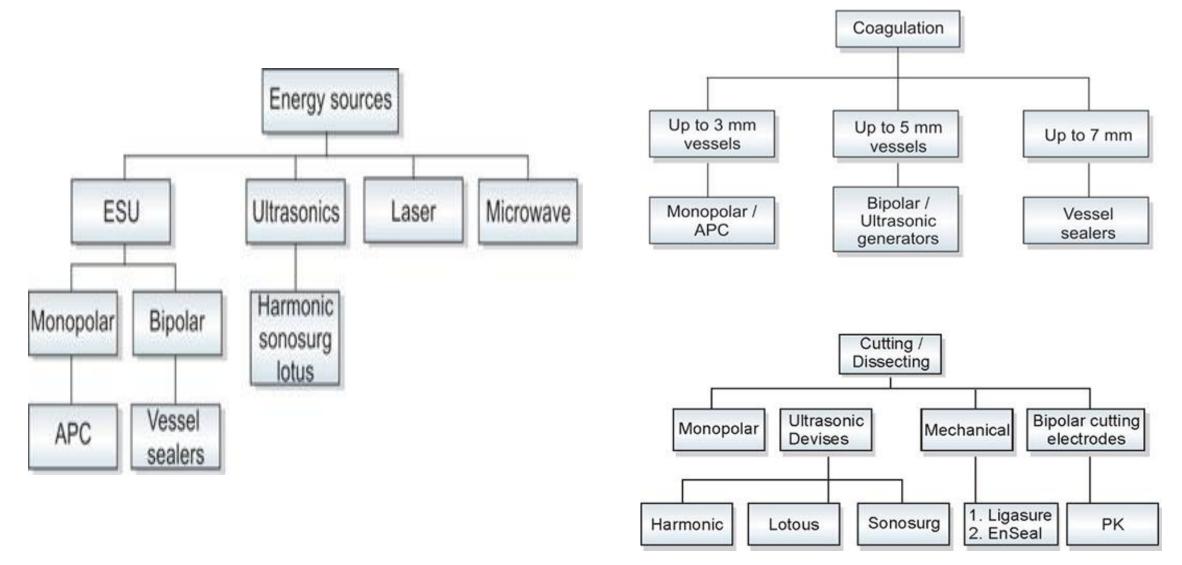
Understanding and safe use of energy modalities in urologic surgery

충북의대 김용준

사랑의 교육, 창의적 연구, 감동의 진료로 건강한 삶을 선도한다.

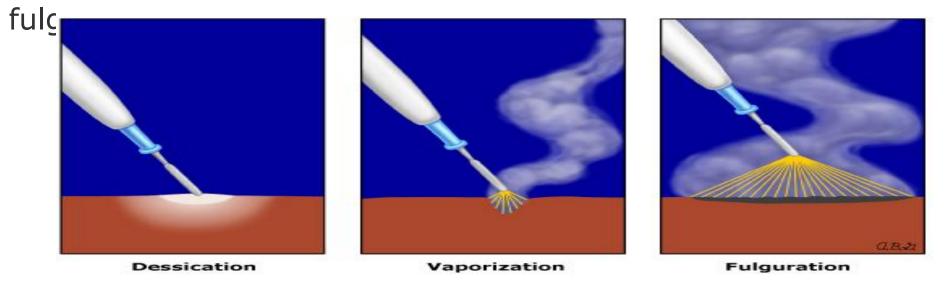
Basic Energy Modalities in Urologic

TISSUE DISSECTION AND CAUTERIZATION


- Electrosurgery
- Ultrasonic Instrumentation (High-Frequency Vibratory Device)
- Laser Instrumentation: Soft-Tissue Applications

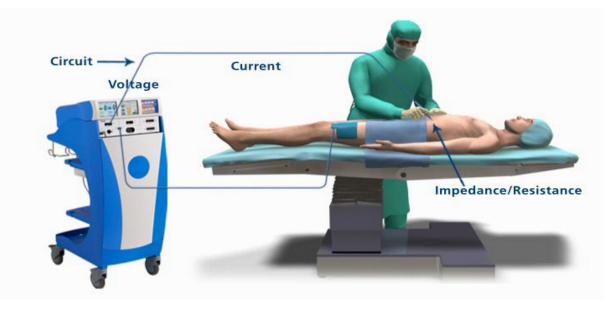
INTRACORPOREAL LITHOTRIPTERS

- Electrohydraulic Lithotripsy
- Pneumatic Lithotripsy
- Ultrasonic Lithotripsy
- Laser Lithotripsy


Tissue Dissection & Cauterization

충북대학교병원

Electrosurgery


- Surgical application of high-frequency electricity
 - Thermal tissue effects: vaporization, desiccation, coagulation,

- Ohm's law: current (I) = voltage (V)/resistance (R)
- Power (P) = Voltage (V) × Current (I) or $P = V^2/R$
 - \succ high voltage \rightarrow increased electrosurgical Cxs

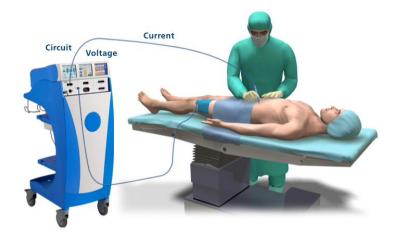
How electrosurgery works

- Back and forth movements of the highfrequency alternating current make the cellular ions oscillate to create frictional heat.
- Electrical energy is converted to mechanical then to thermal energy intracellularly.

Direct Current Generator (constant polarity) **Current Flow** Alternating Current Generator (alternating polarity No Net Current Flow ww.explainthatstuff.com Direct current (DC) Alternating current (AC)

충북대학교병원

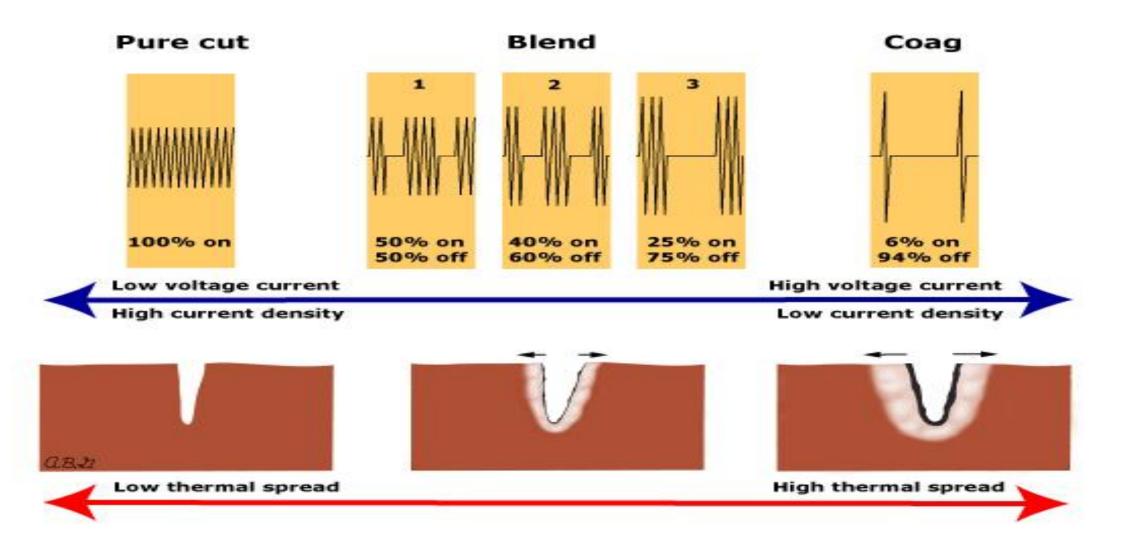
Monopolar vs. Bipolar


충북대학교병원

Monopolar

Active electrode : 수술 부위에 존재Return electrode : 환자의 몸에 부착되어 존재

한 기구에 active electrode와 return electrode가 모두 존재



전류는 환자의 몸을 통해서 흐름

두 전극 사이의 조직에서 전류가 흐름

Three fundamental current waveforms

Thermal tissue effects

	Electrosurgical coagulation	Electrosurgical cutting	Electrosurgical fulguration	Cutting = Vaporization	200 °C	Carbonisation
Tissue temperatures	60-95 ℃	100 ℃	>200 ℃	1	160 °C	Caramelisation
Tissue effect	White coagulation	Vaporization	Black coagulation	Fulguration	100 °C	Vaporisation
Best achieved with	Cut output	Cut output	Cut output	and the second of the second o	95 °C	Desiccation
Electrode position	Contact	Near contact	None or near contact	Dessication = Coagulation	60 °C 37 °C	Coagulation Normal T
Electrode shape	Wider	Needle	Needle			

Variables: modify tissue effects

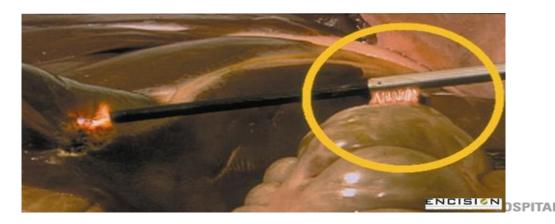
- Generator mode (current waveform)
- Power setting
- Active electrode shape (current density)
- Dwell time
- Electrode-tissue interface
- Tissue factors
- Eschar
- Electrosurgical technique

Clinical Use - Monopolar Electrosurgery

- Cutting (low voltage) or coagulation (high voltage) mode.
- To minimize unwanted effects
 - Use lowest possible power setting
 - Use a low voltage waveform (cut)
 - Use brief, intermittent activation
 - Do not activate in open circuit
 - > Do not activate in close proximity or direct contact with another instrument
 - > Use bipolar electrosurgery where appropriate
 - > Use an all-metal or all-plastic cannula system (not metal-plastic hybrids)
 - Use a return electrode monitoring system
 - Use active electrode monitoring to eliminate concerns regarding insulation failure and capacitive coupling during laparoscopic electrosurgical procedures

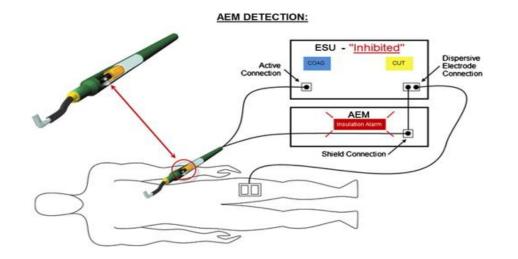
Clinical Use - Bipolar Electrosurgery

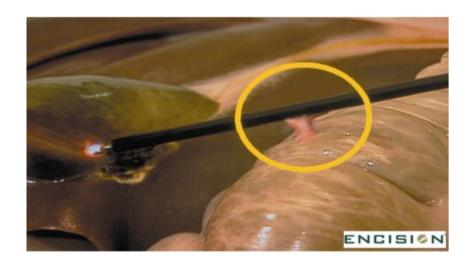
- Generally performed at low voltage (cutting mode) since tissue impedance is relatively low due to the proximity of the two electrodes.
- Less effective for cutting tissue d/t adequate vaporization is difficult to achieve
- Ideal managing vascular areas: blood vessels 3 7 mm
- To minimize unwanted effects
 - Terminate current at the end of vapor phase
 - > Apply current in pulsatile fashion
 - > Avoid the use of an in-line ammeter
 - Alternate between desiccation and incision


• Thermal spread

- Tissue necrosis: delayed healing and postoperative recovery
- Injury to adjacent organs (eg, ureter, bladder, or bowel)
- Expected thermal spread
 - > Monopolar: highest temperatures & greatest degree of thermal spread
 - Traditional bipolar device: 2 ~ 22 mm
 - Ultrasonic device: 0 to 3 mm (Harmonic Scalpel)
 - Vessel sealing devices:
 - ✓ EnSeal Tissue Sealing and Hemostasis System: 1.1 mm
 - LigaSure device: 1.8 mm (10 mm device), 4.4 mm (5 mm device)
 - ✓ Gyrus Plasma Trissector: 6.3 mm

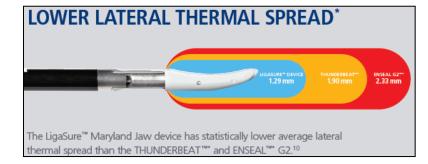
Hazards of Electrosurgery


- Lateral thermal spread
- Residual heat
- Inadvertent activation
- Direct thermal extension (pedicle effect, funnelling)
- Dispersive electrode burns
- Direct coupling
- Capacitive coupling
- Antenna coupling


- Insulation failure
- Alternate site burns
- Electrical shock and glove burns
- Surgical smoke
- Explosions
- Surgical fires
- Electromagnetic interference (EMI) with other devices

Improving Safety

- Active Electrode monitoring (AEM)
- Inspect for faulty insulation
- Avoid skin contact with metals
- Avoid electromagnetic interference
 - Cardiac implantable devices (CIED;
) that use electric current may be affected by the use of electrosurgery
 - Damage to the device, inability of the device to deliver pacing or shocks, lead-tissue interface damage, etc.

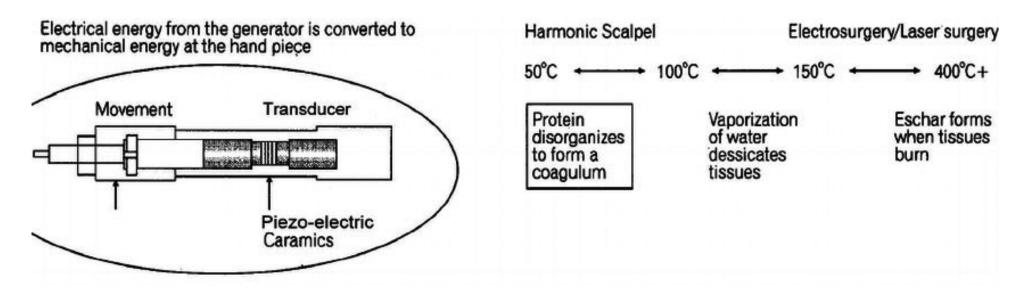


Advanced Electrosurgical Devices – bipolar

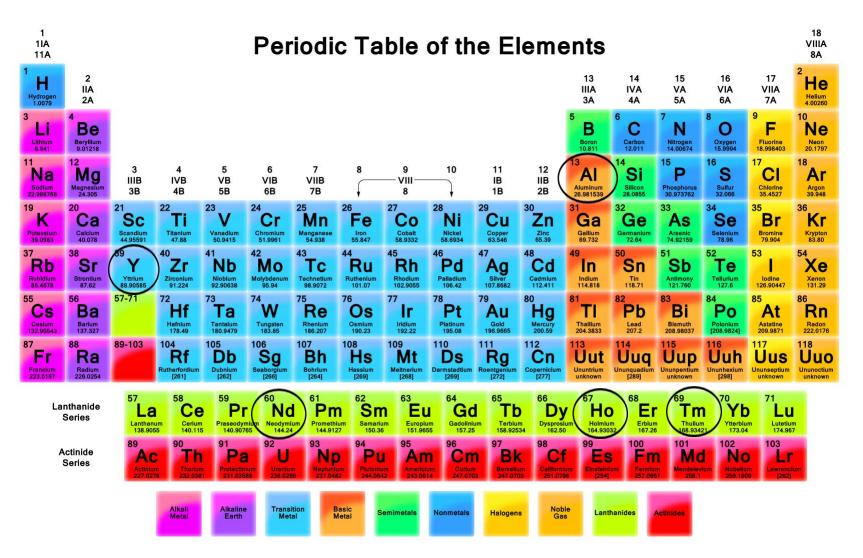
- LigaSure device (bipolar vessel sealing system)
 - > Mechanism: bipolar energy & pressure \rightarrow fuse collagen and elastin
 - Seals vessels: up to 7 mm
 - thermal spread: approximately 2 mm

EnSeal

- Mechanism: compression mechanism & thermal energy control
- Seals vessels: up to 7 mm
- thermal spread: approximately 2 mm

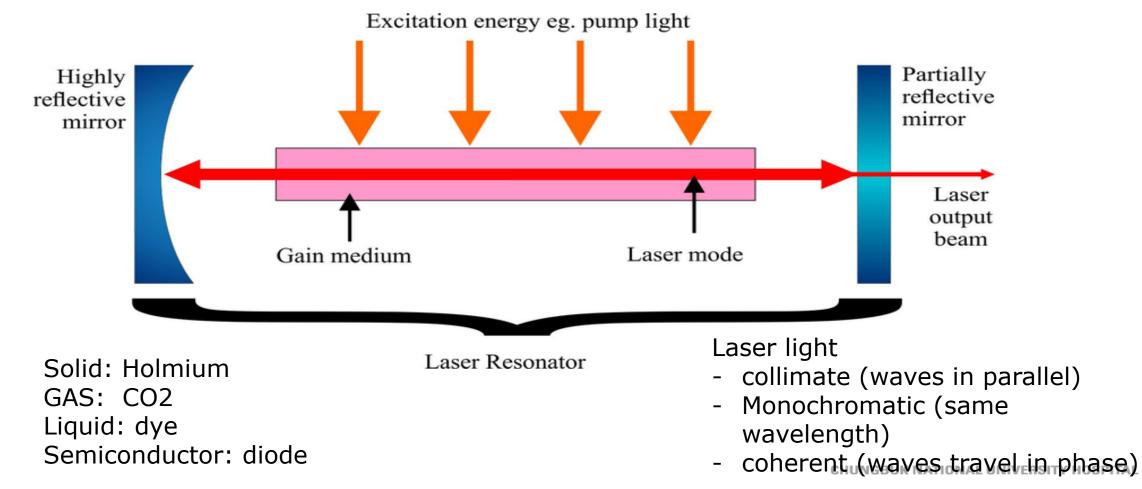

PlasmaKinetic tissue management system

- > Mechanism: pulsed bipolar energy \rightarrow allowing intermittent tissue cooling
- Limited lateral thermal spread & tissue sticking

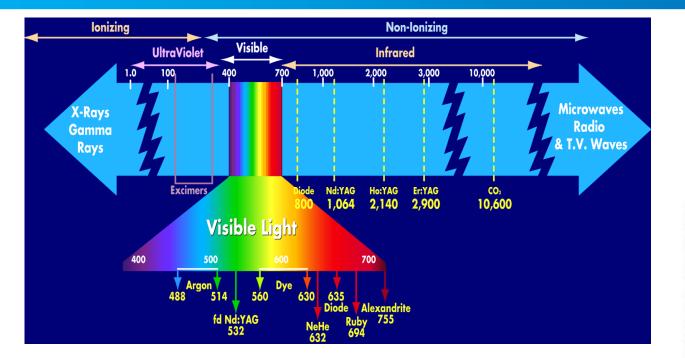

Advanced Electrosurgical Devices - Ultrasonic

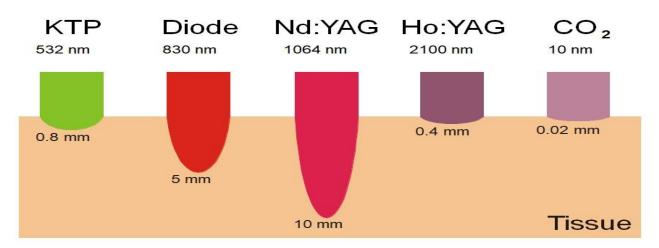
Ultrasonic cutting and coagulating device

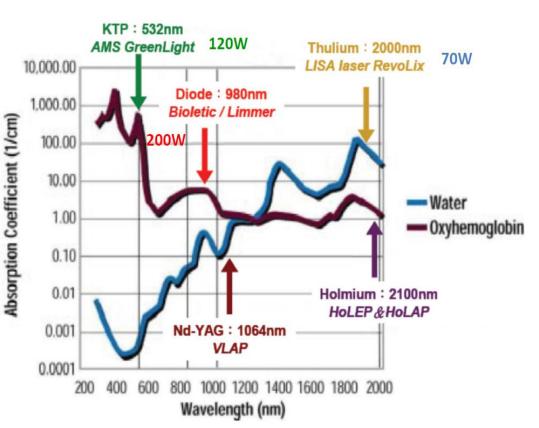
- Harmonic Scalpel, Sonocision, Thunderbeat
- Limited ability to coagulate vessels larger than 3 to 5 mm
- Potential for extensive thermal spread at high energy levels for more than five seconds



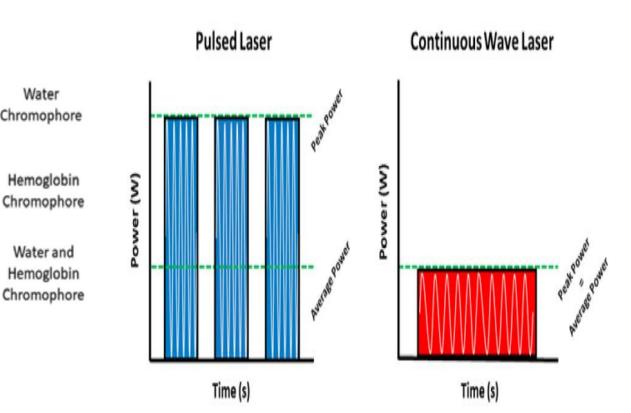
Lasers




Laser Physics


 Light amplification by stimulated emission of electromagnetic radiation (LASER)

Laser Wave Length & Tissue Effects

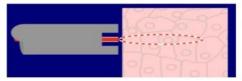

충북대학교병원

Laser/Tissue Interaction

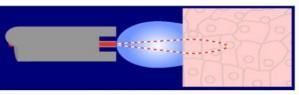
Various Diode the foreening Superpuls 10, CD2 5000111 1064 1117 Holmium 2140 min Thullund OIO CIT Estim 2940 mm Water <0.1 Chromophore 0.2 0,3 0.4 0.5 1.0 2.0 3.0 4.0 5.0 6.0

C = continuous, P = Pulsed, V = variable mode options Many laser energies can be modified to deliver energy in various modes

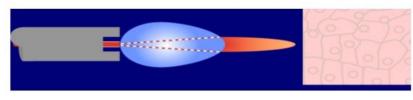
Depth in mm


Laser/Tissue Interaction

충북대학교병원


Photothermal effect at tissue temperatures

Temp (℃) Threshold	Biological Effect	
37	Body temperature	
45	Hyperthermia	
60	Coagulation (near tissue)	
100	Vaporization/cutting (in contact with tissue)	
150	Carbonization	
300 Leser1	Meltina	
1	Tissue surface	
	Carbonization*	
	Vaporization*	
	Coagulation*	
*Irreversible change	•*Reversible change	


Adjusting distance of fiber from tissue will achieve different tissue effects

Near Contact or Contact

Defocused

> 5 mm away

Cutting and ablating

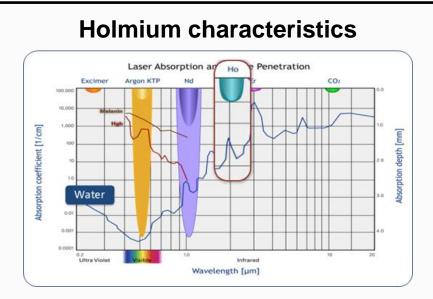
Coagulation

No tissue effect

Safety

- Most medical lasers: class 4
 - Cause eye or skin damage via direct or scattered exposure
 - Protective, wavelength specific eyewear for all those working with the fiber is recommended.
 - For the patient, the degree of protection is dictated by the nominal ocular hazard distance
 - Regular inspection and maintenance of the machine
 - The laser unit/resonator: cool environment & free from moisture

Laser type	Power (W)	NOHD (m)
CO2 (10,600nm)	60	175
KTP (532nm)	180	33.9
Nd:YAG (1064nm)	100	9.8
Holmium (2140nm)	120	1.6
	100	1.9
	50	1.9
	20	1.1
Diode (1470nm)	100	1.63
Thulium (~2000nm)	150	1.08


* NOHD: Nominal Ocular Hazard Distance

	CO2	Diode	Erbium	KTP	Holmium	Thulium	Nd:YAG
Bladder Ca					0	0	
Prostate ablation		0		0	0	0	
Prostate enucleation		0		0	0	0	
Radiation cystitis				0			
Skin warts	0	0			0		
Stone disease					0	0	
Trans perineal prostate ablation		0					
Upper tract cancer					0	0	0
Urethral stricture				0	0	0	
Ureteral stricture					0		
SUI, UTI	0		0				

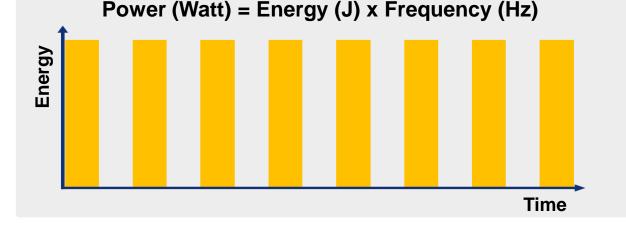
Holmium Laser

충북대학교병원

- Good absorption in water Efficient energy absorption in water-filled targets (soft tissue & stones) Less risk to surrounding tissues
- Minimal penetration depth (0.4mm) Controlled and precise incisions
- **Pulsed Solid state** Minimized risk of tissue charring

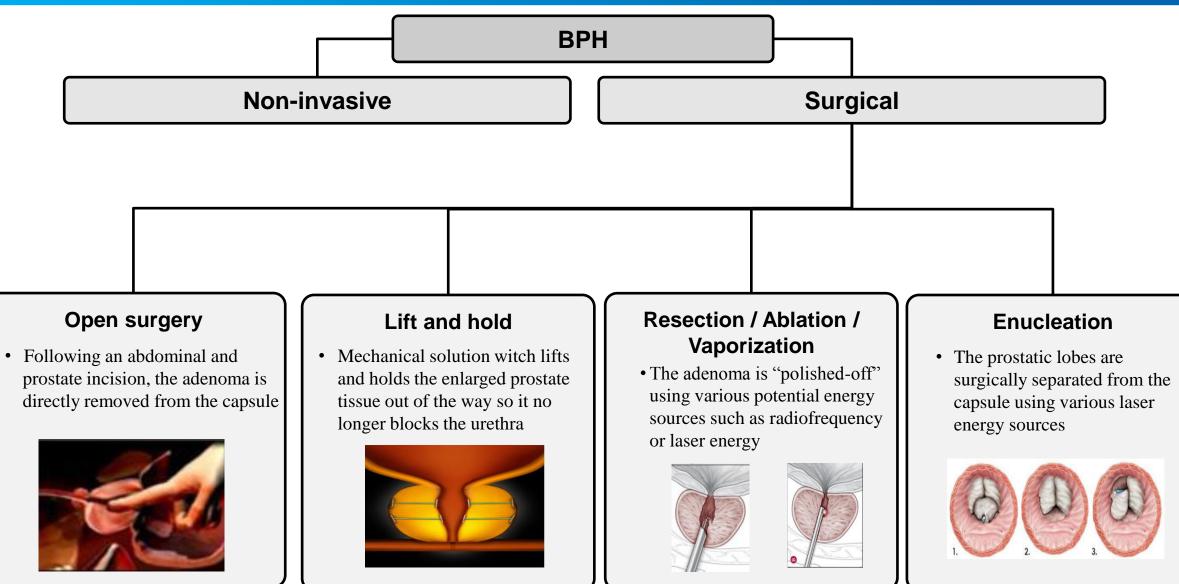
Factors influencing Laser's impact

Energy

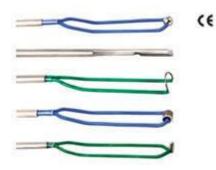

- The energy of each pulse, measured in Joules
- As energy in use increases, the impact on the target grows

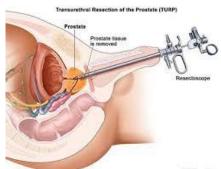
Mr Frequency

- The **frequency** at which pulses are emitted, measured in $\ensuremath{\text{Hz}}$
- Higher frequency allows to emit more pulses in a set time


Distance

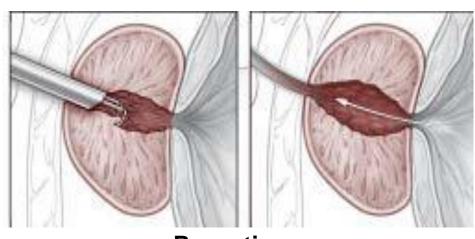
• The closer the target is to the fiber tip – the more impact it will absorb


Usages – Prostate



Monopolar & Bipolar TURP

- Monopolar TURP
 - Electrical current passes through the prostate from the active electrode (connected to the resectoscope loop) to a grounding pad attached to the patient.
 - Glycine used as irrigant
 - Potential risks:
 - Nerve damage
 - Cardiac Pacemaker malfunction
 - Excessive heating of tissues
 - ✓ TUR Syndrome


- Bipolar TURP
 - Electricity runs between active & passive electrode
 - Forms a Vapor at tissue interface
 - Tissue Vaporization
 - Normal saline can be used
 - Risks:
 - Blood Transfusion rate
 - Clot formation Myocardial Infarction
 - Recurrence rates

Usages - Prostate disease

- Prostate enucleation, ablation/vaporization, etc.
- Laser: Holmium, thulium, KTP/GreenLight[™], and various diodes
- No risk for TUR syndrome.
- Holmium Enucleation: most widely used
- Thulium Enucleation
 - Continuous heat, vaporization
 - Better hemostasis c/w Holmium
- KTP (GreenLight[™]) Laser Enucleation
 - Continuous, Hb. Absorption
- Diode Laser Enucleation
 - > DOP: 4-5mm, continuous, absorb by water & Hb.

충북대학교병원

Resection

Resection / Ablation / Vaporization

충북대학교병원

Procedure

Transurethral resection of the prostate (TURP) *Tissue is resected using radiofrequency loop*

Characteristics

- Significant bleeding
- Inconsistent recurrence

- Long hospitalization
- TURP syndrome
- Continuous wave may cause charring and increase complication rate
- Bubbles formation low visibility
- Ineffective for stones
- Continuous wave may cause charring and increase complication rate
- Higher depth of penetration as it is a wavelength observed by hemoglobin
- Unable to have direct tissue contact which can also lead to higher recurrence rates
- Special physician and operation room protection is needed
- Ineffective for stones
- Full contact with tissue maximum energy transmission
- Solid pulse state no charring Clear visibility
- High absorption in water and precise penetration rate, minimizing collateral risk to the surrounding tissues
 CHUNGBUK NATIONAL UNIVERSITY HOSPITAL

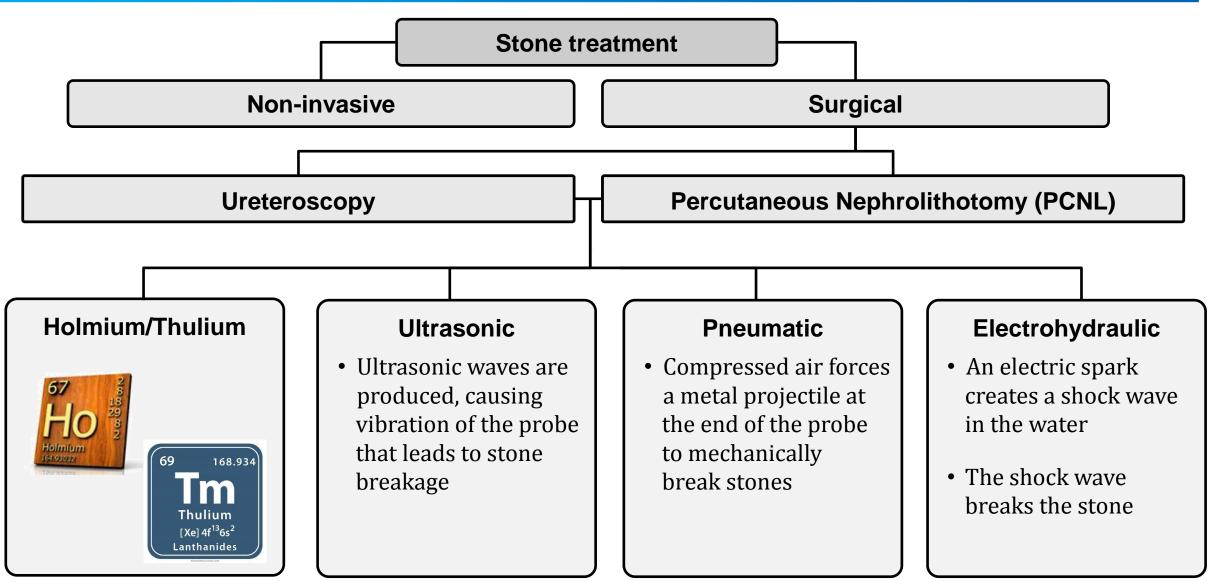
Usages - Urothelial carcinoma

- Urothelial cancers: very water rich & vascular \rightarrow well suited for laser therapy

Bladder Cancer

- Nd:YAG
 - ✓ Absorbed by Hb with a high DOP→ deeper & effective tumor ablation and hemostasis.
 - higher risk of bladder perforation & bowel injury
- Holmium
 - minimizes risk of perforation d/t shallow penetration and lower thermal effect
 - \checkmark En bloc resection (0.8 to 1.2 J at 10 to 20 Hz with a 550 μm end-fire fiber)
- > Thulium
 - more shallow DOP than holmium
 - \checkmark En bloc resection various levels of power (5 to 50 W) with a 550 μm fiber

• Upper TCC


- Renal sparing surgery (low grade disease, solitary kidney or CKD, etc.)
- Nd:YAG, Holmium, Thulium

Usages - Others

- Stricture
 - 70-90% success rate
 - Risk factor for recurrence: >2cm, mid ureter, impaired renal function, HN..
 - Lasers: holmium (m/c), thulium and KTP/GreenLight
- Radiation Cystitis
 - Lasers: KTP (High affinity for Hb), Diode & holmium (rare)
- GU syndrome of menopause
- Stress urinary incontinence
- Genital Warts
 - CO2, holmium, Diode
 - > Low scaring, low recurrence

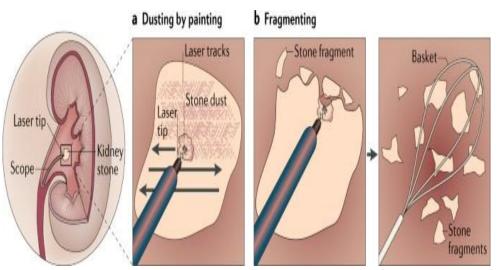
Usage - Lithotripsy

Characteristics of Commonly Used Intracorporeal Lithotripters

MODALITY	CONTAC T	MECHANISM OF ACTION	TISSUE EFFECTS	ADVANTAGES	DISADVANTAGES
EHL	1 mm from Stone	Electric spark produces vapor bubble and subsequent cavitation bubble creates shockwaves that fracture stones	 >1 mm distance from mucosa <500 mJ—no injury >1000 mJ— ureteric perforation 	Able to reach lower poleInexpensive	 Significant tissue damage at higher energy Durability of probe tip
Ultrasonic	Direct Contact	Rapidly vibrating probe tip results in fragmentation, while simultaneous aspiration removes debris	Mucosal strippingNo muscularis damage	 Most efficient single modality In-line suction for simultaneous stone removal 	• Reduced efficiency in hard stones
Pneumanic	Direct contact	Ballistic tip repeatedly strikes stone similar to jackhammer	 Focal areas of hemorrhag e and mucosal erosions Least traumatic of all intr acorporeal lithotripters 	 Least traumatic Works well on harder stones Least expensive 	Least efficientSignificant retropulsion
Ho:YAG laser	Direct contact	Photothermal energy transfer rapidly heats and disintegrates stone, producing fine fragments	• Thermal injury to depth of 0.5–1.0 mm	 Flexible enough to reach lower pole Smallest fragment Works on all stone compositions Can be used for nonstone indications 	 Mucosal injuries with 0.5-1 mm depth of penetration Fiber breakage can damage flexible scope High initial cost

Usages - Urolithiasis

Holmium laser


- Various sized Laser fiber: 200 μm ~ 1000 μm
- Short DOP (~0.4mm): less likely to damage urothelial mucosa
- Moses effect: efficiently break up stones

Thulium or TFL

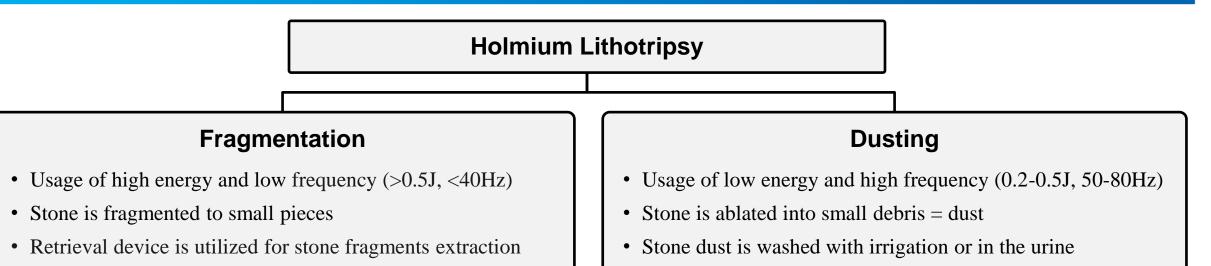
- > Thin laser fiber: 150 μ m (irrigant flow \uparrow)
- DOP: ~0.2mm
- Efficiently break up stones

Dusting vs Fragmenting

- Dusting: higher frequency (50 to 80 Hz) & lower energy (0.2 to 0.4 J)
- Fragmentation: lower frequency (4 to 10 Hz) & higher energy (1 to 2 J)

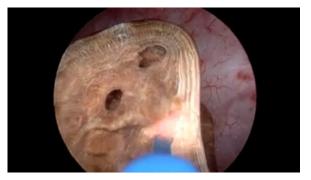
Ho:YAG & Thulium Fiber Laser

충북대학교병원


silica fiber

laser

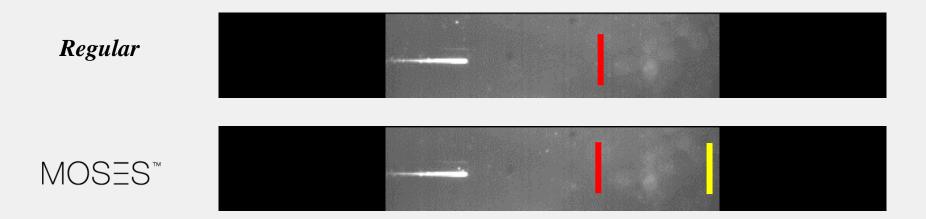
Laser specifications	Ho:YAG Laser	TFL	16 Thulium fiber laser
Peak power	N/A	500 W	Holmium YAG laser
Average power	120-140 W	50-60 W	Holmium YAG laser Holmium YAG laser Holmium YAG laser
Pulse energy	0.2-6.0 J	0.025-6.0 J	Absorption C
Pulse frequency	5–80 Hz	1-2400 Hz	loseq 2
Pulse duration	50–1300 μs	200 µs-50 ms	0
Pulse profile	Irregular spikes with rapid descent	Approximately square wave	Holmium YAG laser
Wavelength	2100 μ m	1920–1960 μm	Low-power generator Single cavity
Minimum laser fiber diamete	200 μm	50 μm	Up to 30 W
r			High-power generator
Energy efficiency	1%	12%	Up to 120 W
Power supply required	High amperage power outlet	Standard power outlet	Vapor-compression refrigeration system
Energy source	Flash lamp	Laser diodes	
Gain medium	Crystal rods containing holmium ions	Laser fiber core containing thulium ions	Thulium fiber laser
Cooling apparatus	Water	Air	Diode laser
Weight	245-300 kg	36 kg	
Peak noise level	70 dB	N/A	Diode Thulium-doped silica fiber


Holmium Lithotripsy

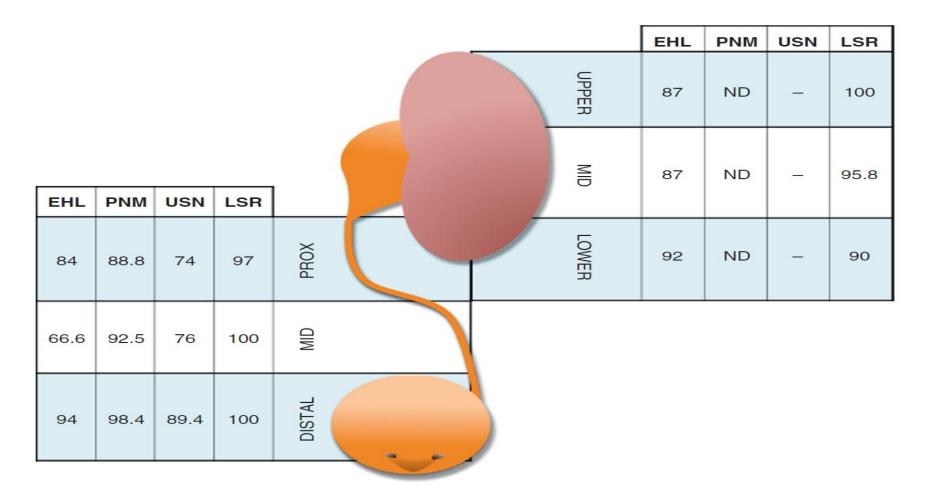
Required	Retrieval devices	Not required
Higher	Retropulsion	Lower
Higher	Intra op complication	Lower
Higher	Cost	Lower
Higher	Fiber degradation rate	Lower

Holmium Lithotripsy

충북대학교병원


Challenges in Holmium lithotripsy

Reduction in energy transmission and high dependency on distance Maximized energy transmission


MOS∃S™

Utilizing the Moses fiber, the Moses technology modulates the laser pulse so that it first separates the water, and then delivers the remaining energy through the bubble and towards the target stone, thus less energy is lost

Stone-free rates in ureteroscopy

충북대학교병원

Stone-free rates (percentage) for intracorporeal lithotripters used in ureteroscopy by anatomic region. *EHL*, Electrohydraulic lithotripsy; *LSR*, laser; *ND*, no data; *PNM*, pneumatic; *PROX*, proximal; *USN*, ultrasonic.

Complications & Prevention

• Injuries result from

- equipment failure, technique errors, inadequate understanding of the properties of the particular laser and its thermal effects
- Eye injury, Air embolism, Ureter & bladder perforation, skin burn

Prevention

- > Proper education and knowledge of the differences among the various laser energies
- Movement of laser fibers (slow versus fast) varies depending on the laser wavelength and chromophore (different techniques is applied to different energies)
- Improper use can lead to under/overtreatment of tissue and potentially lead to injury (long dwell times for certain lasers can cause deep tissue damage/injury).
- ➢ Prolonged laser use → surgeon should be cognizant of overheating of the irrigant fluid that can lead to thermal injury of the urothelial mucosa

Long-term complications associated with

	Incomplete tissue removal which may require retreatment
	Irritative symptoms, sometimes severe, from thermal effect (more common with continuous lasers and deeper penetration)
	Erectile dysfunction
	Stress and/or urge incontinence
Prostate reduction surgery	Bladder neck contracture (likely d/t excessive coagulation instead of vaporization and prolonged heat delivery to the bladder neck)
	Damage to the ureteral orifices
	Severe thermal injury to the bladder from elevated temperature of irrigant (it is important to use irrigation at room temperature and avoid fluid warmer when performing laser prostate surgery, particularly with continuous laser energies)
Upper tract urothelial	Aggressive lasering within the ureter can result in ureteral damage leading to perforation, scarring, fibrosis and stricture formation
carcinoma/stones:	Pulsed modes and cool irrigation fluid reduce collateral collateral thermal damage
Bladder therapy:	Bladder perforation with extensive lasering (laser energy is best when applied to the surface of the bladder in short bursts)
	Distal ureteral injury
	Bowel injury from prolonged dwell time with Hb based lasers

- Electrosurgery is a very useful surgical tool. Improvements in technology increased its safety and reduced complications.
- Electrosurgery facilitates surgery as a versatile tool but training is essential to understand its principles and reduce complications.
- Laser energies have been of significant benefit to patients and surgeons.
- The surgeon must be aware the differences of its characteristics to use the technology safely and correctly.

충북대현교명원

감사합니다.

